Proof of Main’s Theorem

Our goal is to prove that dfdx(x)=0\frac{df}{d\vec{x}}(\vec{x}^*) = 0, for x=minf(x)SRn\vec{x}^* = \min f(\vec{x}) \in S \sube \mathbb{R}^n

Since SS is an open set, let

0<Δx<ϵ0 < ||\Delta \vec{x}|| < \epsilon

such that x±ΔxS\vec{x}^* \pm \Delta \vec{x} \in S

Then using Taylor’s theorem

f(x+Δx)=f(x)+dfdx(x)Δx+O(Δx)f(\vec{x}^* + \Delta\vec{x})=f(\vec{x}^*)+\frac{df}{d\vec{x}}(\vec{x}^*) \Delta x+O(\Delta \vec{x})

We know that f(x+Δx)f(x)f(\vec{x}^* + \Delta \vec{x}) \ge f(\vec{x}^*)

f(x)f(x)+dfdx(x)Δx+O(Δx)0dfdx(x)Δx+O(Δx)0dfdx(x)Δx+12d2fdx2(x)Δx2+16d3fdx3(x)Δx3+divide each side by Δx0dfdx(x)+12d2fdx2(x)Δx+16d3fdx3(x)Δx2+as Δx0,0dfdx(x)\begin{split} f(\vec{x}^*) &\le f(\vec{x}^*)+\frac{df}{d\vec{x}}(\vec{x}^*) \Delta x+O(\Delta \vec{x}) \\ 0 &\le \frac{df}{d\vec{x}}(\vec{x}^*) \Delta \vec{x} + O(\Delta \vec{x}) \\ 0 &\le \frac{df}{d\vec{x}}(\vec{x}^*) \Delta \vec{x} + \frac{1}{2}\frac{d^2f}{d\vec{x}^2}(\vec{x}^*) \Delta \vec{x}^2+\frac{1}{6}\frac{d^3f}{d\vec{x}^3}(\vec{x}^*) \Delta \vec{x}^3+ \cdots \\ &\text{divide each side by $\Delta \vec{x}$} \\ 0 &\le \frac{df}{d\vec{x}}(\vec{x}^*) + \frac{1}{2}\frac{d^2f}{d\vec{x}^2}(\vec{x}^*) \Delta \vec{x}+\frac{1}{6}\frac{d^3f}{d\vec{x}^3}(\vec{x}^*) \Delta \vec{x}^2+ \cdots \\ &\text{as } \Delta \vec{x} \rightarrow 0, \\ 0 &\le \frac{df}{d\vec{x}}(\vec{x}^*) \end{split}

If we use the same proof for f(xΔx)f(\vec{x}^*-\Delta \vec{x}), then

0dfdx(x)\begin{split} 0 &\le -\frac{df}{d\vec{x}}(\vec{x}^*) \end{split}