Proof of Spectral Matrix has eigenvalues of the same algebraic and geometric multiplicity

Lemma 1

Let (λ,u)(\lambda, \vec{u}) be an eigenpair of ASnA \in S^{n}, then:

U,U is orthornormal:UAU=[λ0000[B]]and BSn1\exist U, U \text{ is orthornormal}: \\ U^{\top} A U = \begin{bmatrix} \lambda & \begin{matrix} 0 & \dots & 0 \end{matrix} \\ \begin{matrix} 0 \\ \vdots \\ 0 \end{matrix} & \begin{bmatrix}B\end{bmatrix} \end{bmatrix} \\ \text{and } B \in S^{n-1}
Intuition for this lemma: We want to prove the multiplicity equality property by induction, each time we can just count the multiplicity for the current λ\lambda and hand down other λ\lambdas of AA to the lower-dimension induction on BB

Proof of Lemma 1:

We will construct UU by:

U=[u[U1]]U = \begin{bmatrix} \vec{u} &\begin{bmatrix} U_1 \end{bmatrix} \end{bmatrix}

Seems like we can use gram-schmidt to construct U1U_1

Consider the multiplication of UAUU^{\top} A U:

UAU=[u[U1]][A][u[U1]]=[u[U1]][AuAU1]=[u[U1]][λuAU1]=[λuuuAU1U1λu[B=U1AU1]]=[λ000[B=U1AU1]]\begin{split} U^{\top}AU &= \begin{bmatrix} \vec{u}^{\top} \\ \begin{bmatrix} U_1^{\top} \end{bmatrix} \end{bmatrix} \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} \vec{u} &\begin{bmatrix} U_1 \end{bmatrix} \end{bmatrix} \\ &= \begin{bmatrix} \vec{u}^{\top} \\ \begin{bmatrix} U_1^{\top} \end{bmatrix} \end{bmatrix} \begin{bmatrix} A\vec{u} &AU_1 \end{bmatrix} \\ &= \begin{bmatrix} \vec{u}^{\top} \\ \begin{bmatrix} U_1^{\top} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \lambda\vec{u} &AU_1 \end{bmatrix} \\ &= \begin{bmatrix} \lambda \vec{u}^{\top}\vec{u} &\vec{u}^{\top}AU_1 \\ U_1^{\top} \lambda \vec{u} &\begin{bmatrix} B = U_1^{\top} AU_1 \end{bmatrix} \end{bmatrix} \\ &= \begin{bmatrix} \lambda &\begin{matrix}0 & \cdots & 0 \end{matrix} \\ \vec{0} &\begin{bmatrix} B = U_1^{\top} AU_1 \end{bmatrix} \end{bmatrix} \end{split}
uAU1=uAundefinedBecause A is symmetricU1=(Au)U1=λuU1=0\vec{u}^{\top}AU_1 = \vec{u}^{\top}\underbrace{A^{\top}}_{\mathclap{\text{Because $A$ is symmetric}}}U_1 = (A\vec{u})^{\top}U_1 = \lambda \vec{u}^{\top}U_1=\vec{0}^{\top}

Proof of the multiplicity equality property

Since we proved in Lemma 1 that BSn1B \in S^{n-1}

B=VΛVB = V^{\top}\Lambda V

We know also:

UAU=[λ000B]U^{\top}AU = \begin{bmatrix} \lambda &\begin{matrix}\cdots &0 \end{matrix} \\ \begin{matrix} 0 \\ \vdots \\ 0 \end{matrix} &B \end{bmatrix}

Therefore

VUAUV=[λ000[VBV=Λ]]VU^{\top}AUV^{\top} = \begin{bmatrix} \lambda &\begin{matrix}\cdots &0 \end{matrix} \\ \begin{matrix} 0 \\ \vdots \\ 0 \end{matrix} &\begin{bmatrix} VBV^{\top} = \Lambda \end{bmatrix} \end{bmatrix}